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Abstract

We present a real-time, data-driven algorithm to en-
hance the social-invisibility of autonomous robot naviga-
tion within crowds. Our approach is based on prior
psychological research, which reveals that people notice
and–importantly–react negatively to groups of social ac-
tors when they have negative group emotions or entitativity,
moving in a tight group with similar appearances and tra-
jectories. In order to evaluate that behavior, we performed
a user study to develop navigational algorithms that min-
imize emotional reactions. This study establishes a map-
ping between emotional reactions and multi-robot trajec-
tories and appearances and further generalizes the finding
across various environmental conditions. We demonstrate
the applicability of our approach for trajectory computation
for active navigation and dynamic intervention in simulated
autonomous robot-human interaction scenarios. Our ap-
proach empirically shows that various levels of emotional
autonomous robots can be used to both avoid and influence
pedestrians while not eliciting strong emotional reactions,
giving multi-robot systems socially-invisibility.

1. Introduction
As autonomous vehicles/robots are becoming more com-

mon in social environments, people’s expectations of their
social skills have increased. People often want these robots
to be more socially visible–more salient social agents within
group contexts [13]. This social visibility includes being
more capable of drawing the attention of humans and evok-
ing powerful emotions [18]. Cases of social visibility in-
clude tasks in which robots must work collaboratively with
humans. However, not all contexts require socially visible
autonomous robots. There are situations in which robots
are not used to collaborate with people but instead used to
monitor them. In these cases, it may be better for robots to
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be socially invisible. For sake of simplicity, we refer to all
kinds of autonomous robots and vehicles as just robots.

Social invisibility refers to the ability of agents to escape
the attention of other people. Evolution has attuned the hu-
man brain to respond rapidly to threatening stimuli, thus
the less a person–or a robot–induces negative emotion, the
less likely it is to be noticed within a social milieu. The
social invisibility conferred by not inducing emotion is es-
pecially important in contexts in which robots are expected
to move seamlessly among people without being noticed.
[8] Research reveals a number of ways of decreasing nega-
tive emotional reactions towards social agents [7], but one
element may be especially important for multi-robot sys-
tems: entitativity [9], “groupiness”) is tied to three main el-
ements, uniformity of appearance, common movement, and
proximity to one another. The more agents look and move
the same, and the closer agents are to each other, the more
entitative a group seems, which is why a marching military
platoon seems more grouplike than people milling around a
shopping mall.

The threatening nature of groups means that the more
entitative (or grouplike) a collection of agents seem, the
greater the emotional reaction they induce and the greater
their social visibility. As maximizing the social invisibility
of collections of agents requires minimizing perceptions of
threat, it is important for multi-robot systems to minimize
their entitativity. In other words, if multi-robots systems
are to move through groups without eliciting negative reac-
tions [12], they must seem more like individuals and less
like a cohesive and coordinated group.
Main Results: We present a novel, real-time planning
algorithm that seeks to optimize entitativity within pedes-
trian environments in order to increase socially-invisible
navigation (by minimizing negative emotional reactions).
This work extends our prior work on learning entitativity
of robot groups [3]. We automatically classify the entita-
tivity of a group of humans or pedestrians in a crowd video
by analyzing their motion trajectories. Our algorithm ex-
tracts the trajectory of each pedestrian in a video at interac-
tive rates. We cluster the pedestrians in a group and learn
various group trajectory-level characteristics. We combine
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Figure 1: Multi-robot navigation systems (vehicles (cx) marked by yellow trajectories) navigate amongst crowds. Our novel
navigation algorithm takes into account various levels of physical and social constraints and use them for: (a) Active Naviga-
tion in the presence of pedestrians (teal trajectories) while moving through them with no collisions; (b) Dynamic intervention
where the robots try to influence the crowd behavior and movements and make the pedestrians avoid the area marked by a
dark blue overlay.

these characteristics to yield an overall entitativity measure.
We establish a mapping between the characteristics and en-
titativity measure using an elaborate web-based perception
user study comparing the participants’ emotional reactions
towards videos of multiple pedestrians. Specifically, peo-
ple report being made more unnerved and uncomfortable
by those collections of pedestrians classified by the algo-
rithm as highly entitative. Results of our mapping are well
supported by psychology literature on entitativity [31].

The rest of the paper is organized as follows. In Section
2, we review the related work in the field of psychology and
behavior modeling. In Section 3, we give a background on
quantifying entitativity and introduce our notation. In Sec-
tion 4, we present our interactive algorithm, which com-
putes the perceived group entitativity from trajectories ex-
tracted from video. In Section 5, we describe our user study
on the perception of multiple simulated robots with varying
degrees of entitativity.

2. Related Work

Human beings are inherently social creatures, making in-
teracting with and perceiving others an important part of
the human experience. Complex interactions within brain
regions work harmoniously to navigate the social land-
scape [34]. Interesting patterns emerge when attempting to
understand how humans view groups of people.

2.1. Psychological Perspectives on Group Dynamics

A long-standing tenet of social psychology is that peo-
ple’s behaviors hinge upon their group context. Importantly,
the impact of social dynamics is highly influenced by group
contexts [37]–often for the worse. Decades of psycholog-
ical research reveals that people interact more negatively

with groups than with individuals [31], expressing more
hostility towards and feeling more threatened by a group
than an individual [12]. Such reactions to groups have
real world implications, especially when onlookers have the
ability to act violently. At the heart of these anti-social
actions are negative emotional reactions, which can be di-
rected at any social agent, whether human or robot [16].
Most often, these emotions are unease [6], threat [16], and
fear [27].

2.2. Human-Aware Robot Navigation

Many approaches have been applied towards the navi-
gation of socially-aware robots [28, 22, 26, 15, 23, 21, 5,
39, 30]. This type of navigation can be generated by pre-
dicting the movements of pedestrians and their interactions
with robots [23]. Some algorithms use probabilistic mod-
els in which robots and human agents cooperate to avoid
collisions [38]. Other techniques apply learning models
which have proven useful in adapting paths to social con-
ventions [24, 29, 32, 10]. Yet other methods model personal
space in order to provide human-awareness [1]. This is
one of many explicit models for social constraints [36, 20].
While these works are substantial, they do not consider psy-
chological constraints or pedestrian personalities.

2.3. Behavior Modeling of Pedestrians

There is considerable literature in psychology, robotics,
and autonomous driving on modeling the behavior of pedes-
trians. Many rule-based methods have been proposed to
model complex behaviors based on motor, perceptual, be-
havioral, and cognitive components [35, 11]. There is
extensive literature focused on modeling emergent behav-
iors [33]. Other techniques have been proposed to model
heterogeneous crowd behaviors based on personality traits



Figure 2: Our method takes a live or streaming crowd video as an input. We extract the initial set of pedestrian trajectories
using an online pedestrian tracker. Based on the level of social invisibility we want to achieve, we compute motion model
parameters of the autonomous robot navigation model using a data-driven entitativity mapping (which we compute based on
a user-study(Section IV)).

[4, 2, 19].

3. Social Interaction

In this section, we present our interactive algorithm for
performing socially-invisible robot navigation in crowds.
Our approach can be combined with almost any real-time
pedestrian tracker that works on dense crowd videos. Fig-
ure 2 gives an overview of our approach. Our method takes
a live or streaming crowd video as an input. We extract the
initial set of pedestrian trajectories using an online pedes-
trian tracker. Based on the level of social invisibility we
want to achieve, we find motion model parameters of the
robot group using a data-driven entitativity mapping (which
we compute based on a user-study(Section IV)).

3.1. Entitativity

Entitativity is the perception of a group comprised of in-
dividuals as a single entity. People sort others into entities
like they group together objects in the world, specifically by
assessing common fate, similarity, and proximity [9]. When
individuals are connected by these properties, we are more
likely to perceive them as a single entity. Larger groups are
more likely to be perceived as entities, but only when there
is similarity among the groups individual members [25].

Entitativity is the extent to which a group resembles a
single entity versus of collection of individuals; in other
words, it is the groups “groupiness” or “tightness” [9, 17].
Overall, entitativity is driven by the perception of three
main elements:

1. Uniformity of appearance: Highly entitative groups
have members that look the same.

2. Common movement: Highly entitative groups have
members that move similarly.

3. Proximity: Highly entitative groups have members
that are very close to each other.

3.2. Notation and Terminology

Notation used in the rest of the paper will be presented
in this section. A collection of agents is called a crowd.
The agents in a crowd are called pedestrians, while the au-
tonomous vehicles that must navigate through a crowd are
called robots. Each agent has a state describing its trajec-
tory and movement parameters. These parameters dictate
the agent’s movement on a 2D plane. An agent’s state is
defined as x ∈ R6:

x = [p vc vpref ]T, (1)

where p is the agent’s position, vc is its current velocity,
and vpref is the preferred velocity on a 2D plane. The pre-
ferred velocity describes the velocity that the agent takes
if there are no other agents or obstacles nearby. In real-
world situations, other agents and obstacles in an agent’s
vicinity cause a difference between vpref and vc, which
indicates the degree of the agent’s interactions with its envi-
ronment. The current state of the environment, denoted by
S, describes the states of all other agents and the current po-
sitions of obstacles in the scene. The state of the crowd, de-
fined as the union of each pedestrian’s state, is represented
as X =

⋃
i xi, where subscript i denotes the ith pedestrian.

Within a crowd, pedestrians can be partitioned into groups
(also called clusters) based on their motion. We represent a
group of pedestrians as G =

⋃
j xj where subscript j de-

notes the jth pedestrian in the group.
The motion model is the local navigation rule or scheme

that each agent uses to avoid collisions with other agents or
obstacles and has a group strategy. The parameters of the
motion model is denoted P ∈ R6. We based our model on
the RVO velocity-based motion model [40]. In this model,
the motion of each agent is governed by these five individual
pedestrian characteristics: Neighbor Dist, Maximum Neigh-
bors, Planning Horizon, (Radius) Personal Space, and Pre-
ferred Speed and one group characteristic: Group Cohesion.



We combine RVO with a group navigation scheme in Sec-
tion 4.2. In our approach, we mainly analyze four parame-
ters (GP ∈ R4): Neighbor Dist, (Radius) Personal Space,
Group Cohesion, and Preferred Speed.

Trajectories extracted from real-world scenarios are
likely to have incomplete tracks and noise [14]. Therefore,
the state of each agent is computed using a Bayesian infer-
ence technique in order to compensate for such errors.

Entitativity Metric: Prior research in psychology
takes into account properties such as uniformity, common
movement, and proximity, and models the perception of en-
titativity using the following 4-D feature vector:

E =


Friendliness
Creepiness
Comfort
Unnerving

 (2)

Friendliness, Creepiness, Comfort and Unnerving (abil-
ity to unnerve) are the emotional impressions made by the
group on observers. Using Cronbach’s α (a test of statistical
reliability) in pilot studies we observed that the parameters
were highly related with α = 0.794, suggesting that they
were justifiable adjectives for socially-invisible navigation.

4. Data-Driven Entitativity Model
In order to evaluate the impact of the various parameters

of the group motion model on the perception of entitativity
of a group of pedestrians, we performed a user study using
simulated trajectories. We provide the details of this user
study in this section.

4.1. Study Goals

The aim of this study was to understand how the percep-
tion of multiple pedestrians is affected by the parameters
of the group motion model. We use the results of this user
study to compute a data-driven statistical mapping between
the group motion model parameters and the perception of
groups in terms of friendliness, creepiness, and social com-
fort.

4.2. Experimental Design

Here, we provide details of the design of our experiment.

4.2.1 Participants

We recruited 40 participants (27 male, x̄age = 32.85, sage =
10.10) electronically and also from Amazon MTurk.

4.2.2 Procedure

A web-based study was performed in which the participants
were asked to watch pairs of simulated videos of pedestri-
ans and compare the entitativity features. Each video con-
tained 3 simulated agents with various settings of the group

motion model parameters. We consider variations in four
group motion models parameters(GP): Neighbor Dist, Ra-
dius, Pref Speed, and Group Cohesion. In each pair, one of
the videos corresponds to the default values of the parame-
ters. The other video was generated by varying one parame-
ter to either the minimum or the maximum value. Thus each
participant watched 8 pairs of videos corresponding to the
minimum and the maximum value for each motion model
parameter. The participants watched the two videos side
by side in randomized order. They could watch the videos
multiple times if they wished and compared the entitativity
features of the pedestrian groups in the two videos. Demo-
graphic information about participants’ gender and age was
collected at the beginning of the study.

Parameters (GP) min max default
Neighbor Distance (m) 3 10 5
Radius (Personal Space) (m) 0.3 2.0 0.7
Preferred speed (m/s) 1.2 2.2 1.5
Group Cohesion 0.1 1.0 0.5

Table 1: Default values for simulation parameters used in
our experiments

4.2.3 Questions

For each trial, the participant compared the two videos (Left
and Right) on a 5-point scale from Left (-2) - Right (2).
We used the following questions to record participants’ re-
sponses on friendliness, creepiness, or social comfort expe-
rienced:

1. In which of the videos, the characters seemed more
friendly?

2. In which of the videos, the characters seemed more
creepy?

3. In which of the videos, did you feel more comfortable
around the characters?

4. In which of the videos, did you feel more unnerved by
the characters’ movement?

These questions were motivated by previous studies [31].
We define an entitativity feature corresponding to each
question. Thus, we represent the entitativity features of a
group as a 4-D vector: Friendliness, Creepiness, Unnerving
(Ability to Unnerve), Comfort.

4.3. Analysis

We average the participant responses to the each video
pair to obtain 8 entitativity feature data points (Ei, i =



1, 2, ..., 8}). Table 2 provides the correlation coefficients
between the questions for all the participant responses. The
high correlation between the questions indicates that the
questions measure different aspects of a single perception
feature, entitativity. As expected, creepiness and unnerving
are inversely correlated with friendliness and comfort. Prin-
cipal Component Analysis of the four entitativity features
also reveals that only 2 principal components are enough
to explain over 96% of the variance in the participants’ re-
sponses. We still use the four features instead of the princi-
pal components because they provide more interpretability.

Friendliness Creepiness Comfort Unnerving
Friendliness 1 -0.829 0.942 -0.802
Creepiness -0.829 1 -0.906 0.858
Comfort 0.942 -0.906 1 -0.833

Unnerving -0.802 0.858 -0.833 1

Table 2: Correlation Between Questions: We provide the
correlation coefficients between the questions. The high
correlation between the questions indicates that the ques-
tions measure different aspects of a single perception fea-
ture, entitativity.

We vary the motion model parameters one by one be-
tween their high and low values (while keeping the other
parameters at default value). The range of entitativity fea-
tures obtained by this variation is presented in Table 3. We
also present the standard deviation in the features.

Min Max STD
Friendliness -0.675 0.725 0.564095
Creepiness -0.425 0.55 0.361297
Comfort -0.675 0.65 0.466644

Unnerving -0.25 0.65 0.327327

Table 3: Range of the Entitativity Features: For low and
high values of motion model parameters (keeping the other
parameters at default value) we obtain the above range of
entitativity features.

Given the entitativity features obtained using the psy-
chology study for each variation of the motion model pa-
rameters, we can fit a generalized linear model to the en-
titativity features and the model parameters. We refer to
this model as the Data-Driven Entitativity Model. For each
video pair i in the gait dataset, we have a vector of param-
eter values and a vector of entitativity features Ei. Given
these parameters and features, we compute the entitativity
mapping of the form:

Friendliness
Creepiness
Comfort
Unnerving

 = Gmat∗


1
14
(Neighbor Dist− 5)
1
3.4

(Radius− 0.7)
1
2
(Pref. Speed− 1.5)

1
1.8

(Group Cohesion− 0.5)


(3)

We fit the matrix Gmat using generalized linear regres-
sion with each of the entitativity features as the responses
and the parameter values as the predictors using the normal
distribution:

Gmat =


−1.7862 −1.0614 −2.1983 −1.7122
1.1224 1.1441 1.7672 −0.2634
−1.0500 −1.2176 −2.1466 −0.9220
1.1948 1.7000 0.9224 0.3622

 .

(4)
We can make many inferences from the values of Gmat.

The negative values in the first and third rows indicate that
as the values of motion model parameters increase, the
friendliness of the group decreases. That is, fast approach-
ing and cohesive groups appear to be less friendly. This val-
idates the psychological findings in previous literature. One
interesting thing to note is that creepiness increases when
group cohesion decreases. When agents/pedestrians walk
in a less cohesive group, they appear more creepy but they
may appear less unnerving.

We can use our data-driven entitativity model to predict
perceived entitativity of any group for any new input video.
Given the motion parameter values GP for the group, the
perceived entitativity or group emotion GE can be obtained
as:

GE = Gmat ∗GP (5)

4.4. Socially-Invisible Vehicle Navigation

To provide socially-invisible navigation, we use the enti-
tativity level of robots. We control the entitativity level de-
pending on the requirements of the social-invisibility. We
represent the social-invisibility as a scalar s ∈ [0, 1] with
s = 0 representing very low social-invisibility and s = 1
representing highly socially-invisible robots. Depending on
the applications and situations, the social-invisibility can be
varied.

We relate the desired social-invisibility (s) to entitativity
features GE as follows:

s = 1− ‖GE−GEmin‖
‖GEmax −GEmin‖

(6)

where GEmax and GEmin are the maximum and minimum
entitativity values obtained from the psychology study.

According to Equation 6, there are multiple entitativ-
ity features GE for the desired social-invisibility s. This
provides flexibility to choose which features of entitativ-
ity we wish to adjust and we can set the desired entitativ-
ity GEdes that provides the desired social-invisibility level.
Since Gmat is invertible, we can compute the motion model
parameters GPdes that achieve the desired entitativity:

GPdes = Gmat
−1 ∗ Edes (7)



These motion model parameters GPdes are the key to
enabling socially-invisible collision-free robot navigation
through a crowd of pedestrians. Our navigation method
is based on Generalized Velocity Obstacles (GVO) [41],
which uses a combination of local and global methods. The
global metric is based on a roadmap of the environment.
The local method computes a new velocity for each robot
and takes these distances into account. Moreover, we also
take into account the dynamic constraints of the robot in
this formulation - for example, mechanical constraints that
prevent the robot from rotating on the spot.

At a given time instant, consider a robot i with posi-
tion pc

roboti
and preferred velocity vpref

roboti
(Figure 3). The

preferred velocity is computed from the global navigation
module of GVO and represents the velocity it would have
for navigating to its goal position in the absence of social
constraints. In each time step, it must choose a velocity
that navigates it closer to its (current) goal while remain-
ing as socially invisible as permissible. If it were to use
the predicted positions ppred

human of pedestrians to update
its own velocity to vpred

roboti
, it would certainly avoid colli-

sions with both pedestrians and scene obstacles, but may
fail at its assigned task. For example, if a robot is tasked
with preventing pedestrians from encroaching on a demar-
cated zone, it is not enough to predict their positions in the
upcoming time step and update its own velocity accord-
ingly. We therefore sacrifice some level of social invisi-
bility by increasing the entitativity of the robots so as to
dynamically intervene in pedestrian movement. The aim
in such a scenario is to induce pedestrians to walk away
from the restricted zone by presenting them with a more
entitative group of robots. Concretely, we use the motion
model parameters GPdes discussed earlier to compute a
goal position ppred+inv

roboti
for the pedestrian and a new veloc-

ity vpred+inv
roboti

for the robot. The robot velocity vpred
roboti

com-
puted from the nave approach may lead to pedestrians in-
truding on restricted zones, whereas the velocity vpred+inv

roboti
computed from our entitative approach will prevent this
while crucially maintaining a desired level of social invisi-
bility for the robots.

5. Applications

We present some driving applications of our work that
are based on use of multiple autonomous car navigation sys-
tems. In these scenarios, our method optimizes multi-robot
systems so that they can interact with such crowds seam-
lessly based on physical constraints (e.g. collision avoid-
ance, robot dynamics) and social invisibility. We simulate
our algorithm with two sets of navigation scenarios based
on the level of increasing social interaction between the
robots and the humans:

5.0.1 Active Navigation

This form of navigation includes autonomous robots that
share a physical space with pedestrians. While perform-
ing navigation and analysis, these robots will need to plan
and navigate in a collision-free manner in real-time amongst
crowds. In this case, the robots need to predict the behavior
and trajectory of each pedestrian. For example, marathon
races tend to have large populations, with a crowd whose
location is constantly changing. In these scenarios, it is nec-
essary to have a navigation system that can detect shifting
focal points and adjust accordingly.

In such scenarios, the robots need to be highly socially-
invisible (s = 0). We achieve this by setting the entitativity
features to the minimum E = Emin (Equation 6).

5.0.2 Dynamic intervention

In certain scenarios, robots will not only share a physical
space with people but also influence pedestrians to change
or follow a certain path or behavior. Such interventions can
either be overt, such as forcing people to change their paths
using visual cues or pushing, or subtle (for example, nudg-
ing). This type of navigation can be used in any scenario
with highly dense crowds, such as a festival or marathon.
High crowd density in these events can lead to stampedes,
which can be very deadly. In such a scenario, a robot can
detect when density has reached dangerous levels and inter-
vene, or “nudge” individuals until they are distributed more
safely.

For dynamic intervention with pedestrians or robots, we
manually vary the entitativity level depending on urgency
or agent proximity to the restricted area. In these situations,
we restrict the entitativity space by imposing a lower bound
smin on the social-invisibility (Equation 6):

smin ≤ 1− ‖E− Emin‖
‖Emax − Emin‖

. (8)

5.1. Performance Evaluation

We evaluate the performance of our socially-invisible
navigation algorithm with GVO [41], which by itself does
not take into account any social constraints. We compute
the number of times a pedestrian intrudes on a designated
restricted space, and thereby results in issues related to nav-
igating through a group of pedestrians. We also measure
the additional time that a robot with our algorithm takes to
reach its goal position, without the pedestrians intruding a
predesignated restricted area. Our results (Table 4) demon-
strate that in < 30% additional time, robots using our nav-
igation algorithm can reach their goals while ensuring that
the restricted space is not intruded. Table 4 also lists the
time taken to compute new trajectories while maintaining
social invisibility. We have implemented our system on a



Figure 3: To provide socially-invisible navigation, we use the entitativity level of robots. We control the entitativity level
depending on the requirements of the social-invisibility.

Windows 10 desktop PC with Intel Xeon E5-1620 v3 with
16 GB of memory.

Dataset Additional Time Intrusions Avoided Performance
NPLC-1 14% 3 3.00E-04 ms
NDLS-2 13% 2 2.74E-04 ms
IITF-1 11% 3 0.72E-04 ms

NDLS-2 17% 4 0.98E-04 ms
NPLC-3 14% 3 1.27E-04 ms
NDLS-4 13% 2 3.31E-04 ms
IITF-2 11% 3 1.76E-03 ms

MANKO 17% 4 1.21E-04 ms
879-38 14% 3 4.82E-04 ms

Students 13% 2 3.47E-05 ms
Campus 11% 3 1.2E-05 ms
Street 17% 4 0.34E-05 ms

Table 4: Navigation Performance for Dynamic Interven-
tion: A robot using our navigation algorithm can reach its
goal position, while ensuring that any pedestrian does not
intrude the restricted space with < 15% overhead. We eval-
uated this performance in a simulated environment, though
the pedestrian trajectories were extracted from the original
video. In all the videos we have manually annotated a spe-
cific area as the restricted space.

We have also applied our algorithm to perform active
navigation (Table 5). The pedestrian density in these crowd
videos varies from low-density (less than 1 robot per square
meter) to medium-density (1-2 robots per square meter), to
high-density (more than 2 robots per square meter).

Dataset Analyzed Input Performance
Pedestrians Frames

IITF-1 15 450 2.70E-04 ms
IITF-3 27 238 7.90E-04 ms
IITF-5 25 450 8.30E-04 ms
NPLC-1 17 238 3.80E-04 ms
NPLC-3 42 450 1.80E-04 ms
NDLS-2 38 238 1.90E-04 ms
Manko 16 373 1.01E-03 ms
Marathon 27 450 9.10E-04 ms
Explosion 28 238 5.80E-04 ms
Street 67 9014 1.0E-05 ms

Table 5: Navigation Performance for Active Navigation:
Performance of our entitativity computation on different
crowd videos for performing active Navigation. We high-
light the number of video frames used for extracted trajec-
tories, and the running time (in milliseconds).



6. Conclusions, Limitations and Future Work
Drawing from work in social psychology, we develop a

novel algorithm to minimize entitativity and thus maximize
the social invisibility of multi-robot systems within pedes-
trian crowds. A user-study confirms that different entita-
tivity profiles–as given by appearance, trajectory and spa-
tial distance–are tied to different emotional reactions, with
high entitativity groups evoking negative emotions in par-
ticipants. We then use trajectory information from low-
entitative groups to develop a real-time navigation algo-
rithm that should enhance social invisibility for multi-robot
systems.

Our approach has some limitations. Although we did
generalize across a number of environmental contexts, we
note that motion-based entitativity is not the only feature
involved in social salience and other judgments. People use
a rich set of cues when forming impressions and emotion-
ally reacting to social agents, including perceptions of race,
class, religion, and gender. As our algorithm only uses mo-
tion trajectories, it does not exhaustively capture all relevant
social features. However, motion trajectories are an impor-
tant low-level feature of entitativity and one that applies es-
pecially to robots, who may lack these higher-level social
characteristics.

Future research should extend this algorithm to model
the appearances of robots in multi-robot systems. Although
many social cues may not be relevant to robots (e.g., race),
the appearance of robots can be manipulated. Research sug-
gests that robots that march will have higher entitativity and
hence more social visibility. This may prove a challenge to
manufacturers of autonomous vehicles, as mass production
typically leads to identical appearances. Another key fu-
ture direction involves examining the interaction of the per-
ceiver’s personality with the characteristics of multi-robot
systems, as some people may be less likely to react neg-
atively to entitative groups of robots, perhaps because they
are less sensitive to general threat cues or, more specifically,
have more experience with robots.
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